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uperposition Principle

Theorem 3. If y, is a solution to the differential equation
| ay" + by' +cy = fi(1),
| and y, is a solution to

ay" + by +cy = fo(t)

then for any constants k; and k,, the function k;y, + k,y» is a solution to the differential
equation

ay" +by' +cy = ki fi(t) + kafo(1) .

Existence and Uniqueness: Nonhomogeneous Case j

Theorem 4. For any real numbers a(#0), b, c, 1, Yo, and Y], suppose y,,(t) i.s a par-

ticular solution to (3) in an interval / containing % and that Vi (1) an.d y,»(t) are lmearly
+* independent solutions to the associated homogeneous equation (4) in I. Then there exists
" a unique solution in / to the initial value problem

©  a"+by+o =), y(n) =Y ¥ =",

and it is given by (5), for the appropriate choice of the constants ¢y, ¢,.

—

\

y'-y=2-¢,

_,_”‘_;-ﬁnd a general solution and a solution satisfying y(0)
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Method of Undetermined Coefficients (Revisited)

To find a particular solution to the differential equation

ay” +by' +cy = B,(t)e",
where P, () is a polynomial of degree m, use the form

(13)  y(t) = (A" + -+ + At +Ap)e”;

if r is not a root of the associated auxiliary equation, take s = 0; if r is a simple root of
the associated auxiliary equation, take s = 1; and if  is a double root of the associated
auxiliary equation, take s = 2.

To find a particular solution to the differential equation
ay” +by' +cy = B,(t)e" cosBt + Q,(t)e“sinpt, B#0,
where P,,(t) is a polynomial of degree m and Q,(t) is a polynomial of degree n, use the
form
(14) (1) = E(Ad*+ - + At + Ag)e® cos Pt
+(Bf*+ -+ + Byt + By)e™ sinpt,

where k is the larger of m and n. If & + iB is not a root of the associated auxiliary equa-
tion. take s = 0; if a + B is a root of the associated auxiliary equation, take s = 1.

Example 5 Write down the form of a particular solution to the equation

Y'+2y' +2y = Se7'sint + 5% " cost .
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Example 6 Write down the form of a particular solution to the equation

y"+2y"+y" =S¢ 'sint+3+Tte" .
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Then we know that a general solution to this homogeneous equation is given by
(2) (1) = e (1) +ean(t) .

where ¢, and ¢ are constants. To find a particular solution to the nonhomogeneous equagj

the strategy of variation of parameters is to replace the constants in (2) by functions of ;. Thy
s . :
is, we seek a solution of (1) of the form

3 y(t) = v ()yi(t) + vy (2)ya(2)

Because we have introduced two unknown functions, v;(¢) and vz(!), it is reasongh,
to expect that we can impose two equations (requirements) on these functions. Naturally, one
of these equations should come from (1). Let’s therefore plug ¥p(t) given by (3) into (1), T,
accomplish this, we must first compute y;,(¢) and yj(t). From (3) we obtain

Yp = (Viyi +05y) + (vy) + vyh) .

To simplify the computation and to avoid second-order derivatives for the unknowns v,, v, in
the expression for y;,, we impose the requirement

) viy + vy, = 0.

Thus, the formula for yp becomes
(5 Yp = vpyi + v,

and so
(6) Yp = VIV + oy + by + vyyh

Now, substituting Yp» ¥p» @nd y,, as given in (3), (5), and (6), into (1), we find
(7) f=ay,+by,+cy,

a(Viyi + viy] + vays + vyf) + by + vayh) + c(vy + vyy,)

= a(viyr + vay2) + vy (ay] + by} +con) + vy(ayy + byp + )
=a(viy) +vy5) +0+0

since y, and y, are solutions to the homogeneous equation. Thus, (7) reduces to

® ity =L,

To summarize, if we can find v, and v, that satisfy both (4) and (8), thay is
nvi +yw; =0,

(9) (-~ L™ f

oy +yw =

then y, given by (3) will be a particular soluti

on to (1). To determj
the linear system (9) for v} and v5. Algebraic

€ vy and v,, we first solve

immediately gives manipulation or Cramer’s ryle (see Appendix D)
, —f(1)y2(r)
) = ’ _ f
e aln@Oxs() =yi(y@] M O = a )-.(r)v{((rr))}—lt)(:)r (0]’
-2 Y1)y,

"In Exercises 2.3, Problem 36,

of aonintiome @0 cw d 2

we dewr'lopcd this approach for first-nrdan 1:
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where the bracketed expression in the denominator (the Wronskian) is never zero because of
Lemma 1, Section 4.2, Upon integrating these equations, we finally obtain

(I") b (,) ‘ - .j'(’).‘l‘(’) (« H )y 7/‘ /(’)Vl(’) ) TS ll.
| -/ub-lm.\-sm i ] O L Gomo - iomm ]

Let's review this procedure.

Method of Variation of Parameters
To determine a particular solution to ay” + by’ + cy = f:

(a) Find two linearly independent solutions {y, (1), y,(¢)} to the corresponding
homogeneous equation and take
(1) = vi()yi (1) + 0 (2)y2(2)
(b) Determine v, () and v,(¢) by solving the system in (9) for v{ () and v}(t) and

integrating. .
(c) Substitute v, (¢) and v,(¢) into the expression for y, () to obtain a particular solution.

Example 1 Find a general solution on (—=m/2,7/2) to
an 2y,
— = tant.
a7
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Example 2 Find a particular solution on (— /2, 7/2) to
d2

y
16 —+y=tant+3t—1.
(16) 2 Y

Example 3 Find a particular solution of the variable coefficient linear equation
(19) Ay —4n' +6y =4, t>0,

given that y, (1) = > and y,(1) = ¢ are solutions to the corresponding homogeneous equation.



