(1)
$$\frac{dT}{dt} = K[M(t) - T(t)] + H(t) + U(t),$$

Solving for T(t) gives

(4)
$$T(t) = e^{-Kt} \int e^{Kt} Q(t) dt + Ce^{-Kt}$$
$$= e^{-Kt} \left\{ \int e^{Kt} \left[KM(t) + H(t) + U(t) \right] dt + C \right\}.$$

Example 1 Suppose at the end of the day (at time t_0), when people leave the building, the outside temperature stays constant at M_0 , the additional heating rate H inside the building is zero, and the furnace/air conditioner rate U is zero. Determine T(t), given the initial condition $T(t_0) = T_0$.

On a mild Saturday morning while people are working inside, the furnace keeps the temperature inside the building at 21°C. At noon the furnace is turned off, and the people go home. The temperature outside is a constant 12°C for the rest of the afternoon. If the time constant for the building is 3 hr, when will the temperature inside the building reach 16°C? If some windows are left open and the time constant drops to 2 hr, when will the temperature inside reach 16°C?

- 1. Kirchhoff's current law The algebraic sum of the currents flowing into any junction point must be zero.
- 2. Kirchhoff's voltage law The algebraic sum of the instantaneous changes in potential (voltage drops) around any closed loop must be zero.
 - (a) According to Ohm's law, the voltage drop E_R across a resistor is proportional to the current I passing through the resistor:

$$E_R = RI$$
.

The proportionality constant R is called the **resistance**.

(b) It can be shown using Faraday's law and Lenz's law that the voltage drop E_L across an inductor is proportional to the instantaneous rate of change of the current I:

$$E_{\perp}=L\frac{dI}{dt}.$$

The proportionality constant L is called the **inductance**.

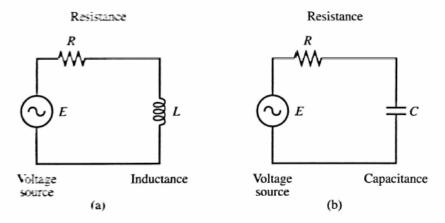


Figure 3.13 (a) RL circuit and (b) RC circuit

(c) The voltage drop E_C across a capacitor is proportional to the electrical charge q on the capacitor:

$$E_C = \frac{1}{C}q.$$

The constant C is called the **capacitance**.

TABLE 3.3 Common Units and Symbols Used With Electrical Circuits			
Quantity	Letter Representation	Units	Symbol Representation
Voltage source	E	volt (V)	Generator⊢ Battery
Resistance	R	$ohm(\Omega)$	-
Inductance	L	henry (H)	-w-
Capacitance	C	farad (F)	$\dashv\vdash$
Charge	q	coulomb (C)	
Current	I	ampere (A)	

Example 1 An *RL* circuit with a 1- Ω resistor and a 0.01-H inductor is driven by a voltage $E(t) = \sin 100t \, \text{V}$. If the initial inductor current is zero, determine the subsequent resistor and inductor voltages and the current.