Listing the Terms of a Sequenc

a. The terms of the sequence $\{a_n\} = \{3 + (-1)^n\}$ are

b. The terms of the sequence $\{b_n\} = \left\{\frac{n}{1-2n}\right\}$ are

c. The terms of the sequence $\{c_n\} = \left\{\frac{n^2}{2^n - 1}\right\}$ are

d. The terms of the **recursively defined** sequence $\{d_n\}$, where $d_1 = 25$ and $d_{n+1} = d_n - 5$, are

Definition of the Limit of a Sequence

Let L be a real number. The **limit** of a sequence $\{a_n\}$ is L, written as

$$\lim_{n\to\infty} a_n = L$$

if for each $\varepsilon > 0$, there exists M > 0 such that $|a_n - L| < \varepsilon$ whenever n > M. If the limit L of a sequence exists, then the sequence **converges** to L. If the limit of a sequence does not exist, then the sequence **diverges**.

C

 $y = a_n$ $L + \varepsilon$ L $L - \varepsilon$

For n > M, the terms of the sequence all lie within ε units of L.

Figure 9.1

THEOREM 9.1 Limit of a Sequence

Let L be a real number. Let f be a function of a real variable such that

$$\lim_{x\to\infty}f(x)=L.$$

If $\{a_n\}$ is a sequence such that $f(n) = a_n$ for every positive integer n, then

$$\lim_{n\to\infty} a_n = L.$$

Finding the Limit of a Sequence

Find the limit of the sequence whose *n*th term is $a_n = \left(1 + \frac{1}{n}\right)^n$.

THEOREM 9.2 Properties of Limits of Sequences

Let
$$\lim_{n\to\infty} a_n = L$$
 and $\lim_{n\to\infty} b_n = K$.

1.
$$\lim_{n\to\infty} (a_n \pm b_n) = L \pm K$$

- 2. $\lim_{n\to\infty} ca_n = cL$, c is any real number.
- $3. \lim_{n\to\infty} (a_n b_n) = LK$
- 4. $\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{L}{K}$, $b_n \neq 0$ and $K \neq 0$

Determining Convergence or Divergen

•••• See LarsonCalculus.com for an interactive version of this type of exam

a. Because the sequence $\{a_n\} = \{3 + (-1)^n\}$ has terms

2, 4, 2, 4, . . .

See Example 1(a), pa

b. For $\{b_n\} = \left\{\frac{n}{1-2n}\right\}$, divide the numerator and denominator by *n* to obtain

Using L'Hôpital's Rule to Determine Convergence

Show that the sequence whose *n*th term is $a_n = \frac{n^2}{2^n - 1}$ converges.

THEOREM 9.3 Squeeze Theorem for Sequences

If $\lim_{n\to\infty} a_n = L = \lim_{n\to\infty} b_n$ and there exists an integer N such that $a_n \le c_n \le b_n$ for all n > N, then $\lim_{n\to\infty} c_n = L$.

Using the Squeeze Theorem

Show that the sequence $\{c_n\} = \left\{ (-1)^n \frac{1}{n!} \right\}$ converges, and find its limit.

THEOREM 9.4 Absolute Value Theorem

For the sequence $\{a_n\}$, if

$$\lim_{n\to\infty} |a_n| = 0 \quad \text{then} \quad \lim_{n\to\infty} a_n = 0.$$

Finding the nth Term of a Sequence

Find a sequence $\{a_n\}$ whose first five terms are

$$\frac{2}{1}$$
, $\frac{4}{3}$, $\frac{8}{5}$, $\frac{16}{7}$, $\frac{32}{9}$, . . .

and then determine whether the sequence you have chosen converges or di

Finding the *n*th Term of a Sequence

Determine the nth term for a sequence whose first five terms are

$$-\frac{2}{1}$$
, $\frac{8}{2}$, $-\frac{26}{6}$, $\frac{80}{24}$, $-\frac{242}{120}$, . . .

and then decide whether the sequence converges or diverges.

Definition of Monotonic Sequence

A sequence $\{a_n\}$ is monotonic when its terms are nondecreasing

$$a_1 \le a_2 \le a_3 \le \cdots \le a_n \le \cdots$$

or when its terms are nonincreasing

$$a_1 \ge a_2 \ge a_3 \ge \cdots \ge a_n \ge \cdots$$

Determining Whether a Sequence Is Mono

Determine whether each sequence having the given nth term is monotonic.

a.
$$a_n = 3 + (-1)^n$$

b.
$$b_n = \frac{2n}{1+n}$$

c.
$$c_n = \frac{n^2}{2^n - 1}$$

(a) Not monotonic

(b) Monotonic

(c) Not monotonic

Figure 9.3

Definition of Bounded Sequence

- 1. A sequence $\{a_n\}$ is **bounded above** when there is a real number M such that $a_n \leq M$ for all n. The number M is called an **upper bound** of the sequence.
- 2. A sequence $\{a_n\}$ is **bounded below** when there is a real number N such that $N \le a_n$ for all n. The number N is called a **lower bound** of the sequence.
- 3. A sequence $\{a_n\}$ is **bounded** when it is bounded above and bounded below.

THEOREM 9.5 Bounded Monotonic Sequences

If a sequence $\{a_n\}$ is bounded and monotonic, then it converges.

Every bounded, nondecreasing sequence converges.

Figure 9.4

Bounded and Monotonic Sequences

- **a.** The sequence $\{a_n\} = \{1/n\}$ is both bounded and monotonic, and so, by Theorem 9.5, it must converge.
- **b.** The divergent sequence $\{b_n\} = \{n^2/(n+1)\}$ is monotonic, but not bounded. (It is bounded below.)
- **c.** The divergent sequence $\{c_n\} = \{(-1)^n\}$ is bounded, but not monotonic.