Definition of Definite Integral

If f is defined on the closed interval [a, b] and the limit of Riemann sums over partitions Δ

$$\lim_{\|\Delta\| \to 0} \sum_{i=1}^n f(c_i) \, \Delta x_i$$

exists (as described above), then f is said to be **integrable** on [a, b] and the limit is denoted by

$$\lim_{\|\Delta\|\to 0} \sum_{i=1}^n f(c_i) \, \Delta x_i = \int_a^b f(x) \, dx.$$

The limit is called the **definite integral** of f from a to b. The number a is the **lower limit** of integration, and the number b is the **upper limit** of integration.

THEOREM 4.5 The Definite Integral as the Area of a Region

If f is continuous and nonnegative on the closed interval [a, b], then the area of the region bounded by the graph of f, the x-axis, and the vertical lines x = a and x = b is

Area =
$$\int_a^b f(x) dx$$
.

(See Figure 4.22.)

EXAMPLE 3

Areas of Common Geometric Figures

Sketch the region corresponding to each definite integral. Then evaluate each integral using a geometric formula.

a.
$$\int_{1}^{3} 4 dx$$

b.
$$\int_{0}^{3} (x+2) dx$$

a.
$$\int_1^3 4 \, dx$$
 b. $\int_0^3 (x+2) \, dx$ **c.** $\int_{-2}^2 \sqrt{4-x^2} \, dx$

Definitions of Two Special Definite Integrals

- 1. If f is defined at x = a, then $\int_a^a f(x) dx = 0$. 2. If f is integrable on [a, b], then $\int_b^a f(x) dx = -\int_a^b f(x) dx$.

Evaluating Definite Integrals

•••• See LarsonCalculus.com for an interactive version of this type of example.

Evaluate each definite integral.

a.
$$\int_{\pi}^{\pi} \sin x \, dx$$
 b. $\int_{3}^{0} (x+2) \, dx$

THEOREM 4.6 Additive Interval Property

If f is integrable on the three closed intervals determined by a, b, and c, then

$$\int_a^b f(x) \ dx = \int_a^c f(x) \ dx + \int_c^b f(x) \ dx.$$

$$\int_{-1}^{1} |x| \ dx =$$

THEOREM 4.7 Properties of Definite Integrals

If f and g are integrable on [a, b] and k is a constant, then the functions kf and $f \pm g$ are integrable on [a, b], and

$$\mathbf{1.} \int_a^b kf(x) \ dx = k \int_a^b f(x) \ dx$$

1.
$$\int_{a}^{b} kf(x) dx = k \int_{a}^{b} f(x) dx$$

2. $\int_{a}^{b} \left[f(x) \pm g(x) \right] dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx.$

EXAMPLE 6

Evaluation of a Definite Integral

Evaluate $\int_{1}^{3} (-x^2 + 4x - 3) dx$ using each of the following values.

$$\int_{1}^{3} x^{2} dx = \frac{26}{3}, \qquad \int_{1}^{3} x dx = 4, \qquad \int_{1}^{3} dx = 2$$

5

THEOREM 4.8 Preservation of Inequality

1. If f is integrable and nonnegative on the closed interval [a, b], then

 $0 \le \int_a^b f(x) \, dx.$

2. If f and g are integrable on the closed interval [a, b] and $f(x) \le g(x)$ for every x in [a, b], then

$$\int_a^b f(x) dx \le \int_a^b g(x) dx.$$

A proof of this theorem is given in Appendix A.

See LarsonCalculus.com for Bruce Edwards's video of this proof.