THEOREM 9.14 Alternating Series Test

Let $a_n > 0$. The alternating series

$$\sum_{n=1}^{\infty} (-1)^n a_n \text{ and } \sum_{n=1}^{\infty} (-1)^{n+1} a_n$$

converge when the two conditions listed below are met.

- $1. \lim_{n\to\infty} a_n = 0$
- 2. $a_{n+1} \leq a_n$, for all n

EXAMPLE 1

Using the Alternating Series Test

Determine the convergence or divergence of

$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n}.$$

EXAMPLE 2

Using the Alternating Series Test

Determine the convergence or divergence of

$$\sum_{n=1}^{\infty} \frac{n}{(-2)^{n-1}}.$$

EXAMPLE 3

When the Alternating Series Test Does Not Apply

a. The alternating series

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(n+1)}{n} = \frac{2}{1} - \frac{3}{2} + \frac{4}{3} - \frac{5}{4} + \frac{6}{5} - \cdots$$

b. The alternating series

$$\frac{2}{1} - \frac{1}{1} + \frac{2}{2} - \frac{1}{2} + \frac{2}{3} - \frac{1}{3} + \frac{2}{4} - \frac{1}{4} + \cdots$$

THEOREM 9.15 Alternating Series Remainder

If a convergent alternating series satisfies the condition $a_{n+1} \le a_n$, then the absolute value of the remainder R_N involved in approximating the sum S by S_N is less than (or equal to) the first neglected term. That is,

$$|S-S_N|=|R_N|\leq a_{N+1}.$$

A proof of this theorem is given in Appendix A.

See LarsonCalculus.com for Bruce Edwards's video of this proof.

EXAMPLE 4 Approximating the Sum of an Alternating Series

•••• See LarsonCalculus.com for an interactive version of this type of example.

Approximate the sum of the series by its first six terms.

$$\sum_{n=1}^{\infty} (-1)^{n+1} \left(\frac{1}{n!} \right) = \frac{1}{1!} - \frac{1}{2!} + \frac{1}{3!} - \frac{1}{4!} + \frac{1}{5!} - \frac{1}{6!} + \cdots$$

EXAMPLE 5 Finding the Number of Terms

Determine the number of terms required to approximate the sum of the series with an error of less than 0.001.

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^4}$$

THEOREM 9.16 Absolute Convergence

If the series $\sum |a_n|$ converges, then the series $\sum a_n$ also converges.

Definitions of Absolute and Conditional Convergence

- 1. The series $\sum a_n$ is absolutely convergent when $\sum |a_n|$ converges.
- 2. The series $\sum a_n$ is conditionally convergent when $\sum a_n$ converges but $\sum |a_n|$ diverges.

EXAMPLE 6 Absolute and Conditional Convergence

Determine whether each of the series is convergent or divergent. Classify any convergent series as absolutely or conditionally convergent.

a.
$$\sum_{n=0}^{\infty} \frac{(-1)^n n!}{2^n} = \frac{0!}{2^0} - \frac{1!}{2^1} + \frac{2!}{2^2} - \frac{3!}{2^3} + \cdots$$

b.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}} = -\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{4}} - \cdots$$

EXAMPLE 7

Absolute and Conditional Convergence

Determine whether each of the series is convergent or divergent. Classify any convergent series as absolutely or conditionally convergent.

a.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n(n+1)/2}}{3^n} = -\frac{1}{3} - \frac{1}{9} + \frac{1}{27} + \frac{1}{81} - \cdots$$

b.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\ln(n+1)} = -\frac{1}{\ln 2} + \frac{1}{\ln 3} - \frac{1}{\ln 4} + \frac{1}{\ln 5} - \cdots$$

1

EXAMPLE 8 Rearrangement of a Series

The alternating harmonic series converges to ln 2. That is,

$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n} = \frac{1}{1} - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots = \ln 2.$$
 (See Exercise

Rearrange the series to produce a different sum.